
 1 Application for patent filed March 19, 1997, entitled
"System and Method for Generating and Utilizing Organized Profile
Information."

- 1 -

 The opinion in support of the decision being
 entered today was not written for publication
 and is not binding precedent of the Board.

Paper No. 18

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS
AND INTERFERENCES

Ex parte VITA BORTNIKOV,
DAVID JOHN LAMBERT,

 BILHA MENDELSON,
ROBERT RALPH ROEDIGER,
WILLIAM JON SCHMIDT,

and INBAL SHAVIT-LOTTEM

Appeal No. 2001-0653
Application 08/820,7361

ON BRIEF

Before JERRY SMITH, BARRETT, and SAADAT, Administrative Patent
Judges.

BARRETT, Administrative Patent Judge.

DECISION ON APPEAL

This is a decision on appeal under 35 U.S.C. § 134 from the

final rejection of claims 1 and 3-40.

Appeal No. 2001-0653
Application 08/820,736

- 2 -

We affirm-in-part.

BACKGROUND

The disclosed invention relates to an optimizing compiler

that uses profile data. Whenever a modification is made to a

procedure that causes a change to its flow control chart, the

profile information previously gathered for the procedure will

often be at least partially invalid or incomplete (spec. at 13).

Prior art compilers are unable to use existing profile data in

such cases, and must generate new profile data for the whole

program each time a procedure is modified (spec. at 13). With

large programs, the time and expense involved in re-profiling the

program each time a minor bug fix occurs may be significant

(spec. at 3-4). The present invention allows the use of existing

profile information even if source code modifications have taken

place by identifying invalid profile information and skipping

profile data of only those procedures (spec. at 13-14).

Claim 1 is reproduced below.

1. A program product, said program product comprising:

storage media; and

an instrumented executable program module stored on
said storage media, said module comprising a mechanism that
causes profile information to be generated into at least one
procedure specific data storage area each time an
instrumented code block is executed.

Appeal No. 2001-0653
Application 08/820,736

- 3 -

Appeal No. 2001-0653
Application 08/820,736

- 4 -

The examiner relies on the following references:

Turbo Profiler Version 2.0 User's Guide (Borland International
Inc. 1991) (hereinafter "Profiler").

Aho et al. (Aho), Compilers -- Principles, Techniques, and Tools
(Addison-Wesley Pub. Co. 1986), Chaps. 7 & 10.

Claim 26 stands rejected under 35 U.S.C. § 112, second

paragraph, as being indefinite.

Claims 1 and 3-40 stand rejected under 35 U.S.C. § 103(a) as

being unpatentable over Profiler in view of common knowledge of

compiler theory as taught by Aho.

We refer to the final rejection (Paper No. 11) (pages

referred to as "FR__") and the examiner's answer (Paper No. 17)

(pages referred to as "EA__") for a statement of the examiner's

rejection, and to the appeal brief (Paper No. 16) (pages referred

to as "Br__") for a statement of appellants' arguments

thereagainst.

OPINION

Indefiniteness

In the second Office action (Paper No. 7), the examiner

rejected claims 10 and 26 under 35 U.S.C. § 112, second

paragraph, as indefinite. The examiner quoted claim 10, which

read: "The apparatus of claim 8 wherein said signature of each

procedure includes at least one functional value computed from

attributes of said procedure." The examiner stated (Paper No. 7,

Appeal No. 2001-0653
Application 08/820,736

- 5 -

p. 2): "This claim was interpreted as input to the profiler which

can/should not be contrrolled [sic] by a Profiler. Not a

limitation of a Profiler." Claim 26 was not mentioned in the

reasoning, but it contains similar language: "The program product

of claim 23 wherein said mechanism that determines if procedure

specific profile data is valid examines at least one functional

value computed from the attributes of the related procedure."

Presumably, the same reasoning was intended to apply to claim 26.

Claim 10 was amended by incorporating the limitations of

claim 8 to read (Paper No. 10): "The apparatus of claim 5 wherein

said checking mechanism determines validity of each of said at

least one procedure counter area by comparing a signature of each

procedure with information stored in each corresponding procedure

counter area [The apparatus of claim 8] wherein said signature of

each procedure includes at least one functional value computed

from attributes of said procedure."

In the final rejection (Paper No. 11), the examiner withdrew

the rejection of claim 10 but maintained the rejection of

claim 26 stating "the language is vague and indefinite" (FR2).

Appellants argue that the examiner provided no explanation

of the basis for the rejection, but merely states that the

language is "vague and indefinite" (Br7).

The examiner responds that "[claims 10 and 26] were

initially identical and both received the same rejection" (EA9)

Appeal No. 2001-0653
Application 08/820,736

- 6 -

and repeats the rejection of claims 10 and 26 from Paper No. 7

and the final rejection, Paper No. 11 (EA9-10).

Because claim 26 is similar to original claim 10, we presume

that the same reasoning was intended to apply, although we agree

with appellants that the rejection is not express on this point.

The examiner stated (Paper No. 7, p. 2): "This claim was

interpreted as input to the profiler which can/should not be

contrrolled [sic] by a Profiler. Not a limitation of a

Profiler." We do not understand this reasoning and the rejection

has not been further explained. It is not even clear whether the

"Profiler" is meant to refer to the Profiler reference or to

profilers in general. Nor do we understand why the examiner

withdrew the rejection of claim 10 if he maintains the rejection

of claim 26 since claim 10 was only amended to add limitations of

original claim 8, from which it depended, and the original

rejected language remains unchanged.

Nevertheless, we see nothing indefinite about claim 26. The

specification states (spec. at 23):

Determining whether or not a procedure has a valid PCA
[procedure counter area] may be accomplished by comparing a
"signature" of the procedure with information in the PCA.
For example, the optimization mechanism 19 can compare the
number of counters in the PCA with appropriate number of
counters required in the procedure being processed. The
optimization mechanism 19 could also compare a check sum in
the PCA with a calculated check sum for the procedure.

Appeal No. 2001-0653
Application 08/820,736

- 7 -

It seems that "functional value computed from attributes of the

related procedure" in claim 26 could read on the disclosed

calculated check sum for the procedure. As another example, in

programming it is common to use a "make file" which is a set of

instructions (usually ASCII Text) to build a program. The make

utility reads the dependencies, figures out which items need to

be rebuilt (for example you changed the source code of a module

after the last time it was built) and automates the process by

executing the appropriate set of commands. The process of

determining which modules were changed must use some attributes

of the module and is one way of determining if specific profile

data is valid. Thus, we conclude that the examiner has not

established a prima facie case of indefiniteness. The rejection

of claim 26 is reversed.

Obviousness

Grouping of claims

Appellants identify the following groups of claims, with the

individual claims within each claim group standing or falling

together (Br6). The representative claim in each group, as

argued by appellants, is underlined; the representative claims

chosen by the examiner (EA7) differ for Groups 4 and 5, but this

does not affect the analysis.

Group 1 - Claims 1, 3, 4, 20-22, 32, 34, and 40;

Appeal No. 2001-0653
Application 08/820,736

- 8 -

Group 2 - Claim 33;
Group 3 - Claims 5-7, 13-17, 23, 24, 29, 30, 35, 36, and 39;
Group 4 - Claims 8-10, 25, 26, and 37;
Group 5 - Claims 11, 12, 18, 19, 27, 28, 31, and 38.

Group 1 - Claims 1, 3, 4, 20-22, 32, 34, and 40

Appellants discuss claim 1 as representative of Group 1

claims (Br8-9). We agree with this grouping since claim 1 is the

broadest claim in the group. We also briefly touch on some

limitations of independent claims 20 and 32, although the claims

in this group stand or fall together with claim 1.

Initially, we note that claim 1 does not require doing

anything with the generated profile data and does not require an

optimizing compiler; compare claim 13. The profile data could be

used by a human to perform optimization as taught by Profiler.

Thus, Aho is not necessary to the rejection of claim 1.

Turbo Profiler is a program for profiling a program, i.e.,

for collecting statistics about the run-time operation of the

program. It was well known in the computer art (spec. at 9,

line 15, to page 10, line 3), that one or more "source modules"

are compiled into "object modules" and then linked together to

form a single executable program module (the "program"), as

recited in the preamble of claim 32. Profiler indicates that a

program can be compiled from several modules (e.g., p. 46: "When

you choose View|Module, a list box appears that lists all the

source modules linked with the program currently loaded into the

Appeal No. 2001-0653
Application 08/820,736

- 9 -

Module window."; p. 110: "If your source consists of 10,000 lines

in ten modules, you should probably analyze only one module at a

time in active analysis."; p. 115: "In very large programs, limit

your selection of area markers to a single module per profile

run."). However, claim 1 does not require the "executable

program module" to be created from more than one source module.

Each program (executable program module) in Profiler is composed

of one or more "routines," where a "routine" refers in a generic

way to functions and procedures (p. 5), and corresponds to the

claimed "procedure."

The user of Profiler determines what parts or "areas" of the

program to profile. Profiler states (p. 109):

An area is a location in your program where you want to
collect statistics: It can be a single line, a construct
such as a loop, or an entire routine. An area marker sets
an internal breakpoint. Whenever the profiler encounters
one of these breakpoints, it executes a certain set of
code--depending on the options you've set for the area in
question. This profiling could be a bookkeeping routine or
a simple command to stop program execution.

The areas are set using the Add Areas menu (p. 50). The "area

markers" and the associated bookkeeping code in Profiler

correspond to the instrumentation code "hooks" described in

connection with prior art profilers (spec. at 8, lines 10-13;

spec. at 9, lines 1-6). Thus, the program with the area markers

inserted in Profiler is "an instrumented executable program

module," as recited in claim 1. The program is inherently stored

Appeal No. 2001-0653
Application 08/820,736

- 10 -

on "storage media," which is broad enough to read on both the

computer memory or storage such as a hard disk, because it must

be stored somewhere in order to be utilized by the computer.

An example of profiling is described in Chapter 4. The

source module PTOLL.C (pp. 129-130) contains three routines:

"main()," "route66()," and "highway80()." If the area is set to

"Routines in Module," which "adds area markers for all routines

in the current module" (p. 50), Profiler will collect information

about the time spent in each routine (procedure) and the number

of execution counts each time the routine is executed, as shown

in Figure 4.1 (p. 130). Each routine is "an instrumented code

block," as claimed. (Other possible examples of "instrumented

code blocks" are a single line of code or a programming construct

such as a loop (pp. 12, 109)). The time-collection compartments

and the count-collection compartments in Figure 4.1 are "at least

one procedure specific data storage area" because they correspond

to data storage areas for time and count data that is specific to

each routine (procedure). Appellants give a similar example of

three procedures with counter areas (spec. at 18):

Therefore, if source module 1 had three procedures "main,"
"foo" and "bar," its corresponding profile data file will
have three procedure counter areas identified as "main,"
"foo" and "bar." The profile data files may be stored or
archived with their corresponding source modules for later
retrieval.

Appeal No. 2001-0653
Application 08/820,736

- 11 -

During execution of the profiled program in Profiler, routine

specific data is stored on stacks (p. 131) and after profiling is

completed, the "[Statistics|Save] command saves the statistics to

a .TFS (Turbo Profiler Statistics) file" (p. 113), which is a

profile data file having time and counter storage areas for each

area which was monitored. The arrangement or data structure of

the "procedure specific data storage area" is not claimed and

therefore does not distinguish over the storage in Profiler.

Profiler keeps track of statistics on each module of the

program and each area in each module and stores area specific

data in a .TFS file, where "[a]n area can be a single line, a

construct such as a loop, or an entire routine" (p. 12).

Profiler teaches that the areas to be profiled can be set using

the Add Areas menu for all routines (procedures) in all modules

of the program (p. 50): "Modules with Source adds area markers

for all routines in modules whose source code is available."

The collected statistics for the program can be viewed in the

Execution Profile window (pp. 13-14 & 55-56) by using the All

choice from the Filter command (p. 67) or the user can choose

only statistics for one module using the Module choice from the

Filter command (p. 68). In the examples of Figure 1.2 (p. 13),

Figure 1.4 (p. 15), and Figure 1.5 (p. 16), each line in the

Execution Profile window has four fields (pp. 13-14): (1) an area

name comprised of a module name (PRIME0) and an area name (31 for

Appeal No. 2001-0653
Application 08/820,736

- 12 -

line 31 in Figure 1.2); (2) the number of seconds spent in that

area (6.2655 sec. for line 31 in Figure 1.2) or the number of

times that line executed (15,122 times for line 22 in Figure 1.4)

or both (Figure 1.5); (3) the percentage of total execution time

spent in that area (93% for line 31 in Figure 1.2) or the

percentage of total counts (82% in Figure 1.4) or both

(Figure 1.5); and (4) a magnitude bar displaying a proportional

graph of time (Figure 1.2) or counts (Figure 1.4) or both

(Figure 1.5). Thus, Profiler stores profile information about

each module and each area (routine or procedure) in the module.

Therefore, except for the need to explain the different

terminology, we find the subject matter of claim 1 to be

anticipated by Profiler. In fact, since no specific structure is

recited for the "procedure specific data storage areas," claim 1

is so broad that it is anticipated by the admitted prior art of

"instrumenting profilers" (spec. at 8-9) since known prior art

instrumenting profilers must save the count statistics for each

block of code or path in storage somewhere.

Appellants' arguments are based on reading limitations from

the specification into the limitation of a "procedure specific

data storage area." Appellants argue (Br8-9):

Claim 1 ... requires that profile information for a
procedure be stored in a procedure specific data storage
area for that procedure. Utilizing such a hierarchical
organizational structure facilitates future optimization by
permitting the procedure specific data storage area

Appeal No. 2001-0653
Application 08/820,736

- 13 -

associated with the procedure to be analyzed during
optimization to determine whether profile data for that
procedure exists and is valid. As described above, this
permits a computer program to be optimized after
modifications made thereto subsequent to profiling, and as a
consequence, much of the time and expense that would
otherwise be associated with re-profiling a computer program
may be eliminated.

The examiner responds that "the limitation 'hierarchical

organizational structure facilitates' is being read into the

limitations of Claim 1[] from the Specification and dependent

claims" (EA23).

We agree with the examiner that claim 1 does not recite a

"hierarchical organizational structure." The specification

describes "storage areas, referred to as module counter areas

(MCA's [sic, MCAs]) and procedure counter areas (PCA's [sic,

PCAs])" (spec. at 17, lines 17-19). Each module has its own

profile data file (MCA) (elements 30 in Fig. 1; MCA data

structure shown in Fig. 2), which includes one or more procedure

counter areas (PCAs) (Fig. 2; PCA data structure shown in Fig. 3;

spec. at 18, lines 5-9; spec. at 19, line 19 to page 20,

line 16). However, these data structures for the MCAs and the

PCAs are not claimed in claim 1. Since appellants have not used

the exact term "procedure counter area" from the specification,

we will not interpret "procedure specific data storage area" to

include all of the disclosed limitations of a PCA. A "procedure

specific data storage area" is broad enough to read on any

Appeal No. 2001-0653
Application 08/820,736

- 14 -

storage area that stores profile data related to a procedure or

routine, which is taught by Profiler.

Claim 20 recites "a hierarchical profile data storage system

... including a mechanism for creating unique module counter

areas for each program module and unique procedure counter areas

for each procedure." Claim 32 recites "for each source code

module, initializing a module counter area; for each procedure in

the module, initializing a procedure counter area within said

module counter area." The claims in Group 1 are argued by

appellants to stand or fall with claim 1 and, so, these other

claim limitations are not at issue. However, we offer some

comments on claims 20 and 32 for appellants' benefit. Profiler

stores profile information about each module in the program and

each area (routine or procedure) in the module. This data has a

"hierarchical" relationship as broadly recited in claim 20; the

data structure is not specifically claimed. Profiler must have

storage areas corresponding to module counter areas and procedure

counter areas as recited in claim 32 in order to be able to

display the statistics according to the module and area

(procedure) in the Execution Profile window (pp. 13-14 & 55-56).

The "module storage area" in claim 32 consists only of "procedure

counter areas" and the storage area for the count data for

procedures for a module in Profiler is considered a "module

storage area." Although claim 32 uses the terms "module counter

Appeal No. 2001-0653
Application 08/820,736

- 15 -

area" and "procedure counter area," claim 32 is not separately

argued for Group 1. Furthermore, appellants have not argued that

all the data structures of Figs. 2 and 3 should be read into

these terms; e.g., that the procedure counter area in Fig. 3

should be interpreted in light of the specification as having a

header information 50, control flow counters 52, direct call site

counters 54, and indirect call site counters 56.

Appellants further argue (Br9):

Applicants' claimed utilization of procedure specific
data storage areas is in contrast to conventional profilers
that store and organize profile data merely on a program-by-
program basis. The profile data is generated for various
regions of a program based upon the insertion of profiling
hooks within specific regions of a program. Certainly, if a
hook is placed in a specific procedure, profile data
specific to that procedure will be created. However, there
is no disclosure or suggestion in the art of storing such
profile data in a procedure specific data storage area.
Storage of the profile data in conventional profiles is
still on a program-by-program basis.

The examiner responds that procedure storage areas are

taught by Profiler (EA24).

Profiler stores profile information about each module of the

program and each area (routine or procedure) in the module as

evidenced by the fact that it can display the profile statistics

according to the module and area (procedure) in the Execution

Profile window (pp. 13-14 & 55-56). The procedure counter and

time areas shown in Figure 4.1 (p. 130) clearly show that

Profiler stores procedure specific data. Claim 1 does not

Appeal No. 2001-0653
Application 08/820,736

- 16 -

preclude the "procedure specific data storage area" from being

part of a larger storage area, such as the .TFS file in Profiler

that stores all program profile information.

Appellants further argue (Br9):

The examiner relies principally on Profiler for
allegedly disclosing the use of procedure specific data
storage areas. However, it appears that the Examiner is
confusing the concept of creating profile data with the
concept of storing profile data, the latter of which is the
focus of claim 1. Indeed, the Examiner's response to
Applicants' arguments made at pages 6 and 7 of the Office
Action dated December 17, 1999 focus on the general
organization of a computer program into modules and
procedures, and specifically only on the creation of profile
data. Applicants are not claiming as novel the concept of
creating profile data that is specific to a particular
procedure. Rather, it is the unique organizational
structure within which such data is stored that is
distinguishable from the prior art of record.

The relevant argument is in the last sentence. The argument

that "it is the unique organizational structure within which such

data is stored that is distinguishable from the prior art of

record" (Br9) is not commensurate in scope with claim 1 because

the "procedure specific data storage area" has not been defined

to have any particular organizational structure. Any data

storage area that stores data related to statistics of a

procedure (routine) is "procedure specific data storage area."

Profiler teaches storing area specific data in a .TFS file, where

"[a]n area can be a single line, a construct such as a loop, or

an entire routine" (p. 12). As to independent claims 20 and 32,

which are not argued with respect to Group 1, these claims do not

Appeal No. 2001-0653
Application 08/820,736

- 17 -

recite any organizational structure which defines over Profiler.

Profiler stores profile information about each module of the

program and each area (routine or procedure) in the module.

Appellants further argue (Br9-10):

Profiler, in particular, is focused only on the
creation of profile data, and not how that data is logically
arranged in storage. As shown, for example, at pages 90-92
of Profiler, profile statistics for a program are stored and
retrieved in .TFS files, each of which organizes profile
data on a program-by-program basis. Moreover, as shown at
pages 47 and 48 of Profiler, the concept of a "module
window" is discussed, explaining how source modules in a
program may be loaded into a module window. Nonetheless,
even though Profiler discusses the possibility of parsing a
program into multiple modules, profile data storage is still
performed in program-wide files. Profiler recognizes the
concept of a module, yet does not disclose or suggest any
mechanism for collecting and storing such information even
on a module-by-module basis, much less on a procedure-by-
procedure basis, as is specifically recited in claim 1.

These arguments are not persuasive. Claim 1 does not recite

how procedure specific data is logically arranged in storage.

Profiler stores profile information about each module of the

program and each area (routine or procedure) in the module as

evidenced by the fact that it can display the profile statistics

according to the module and area (procedure) in the Execution

Profile window (pp. 13-14 & 55-56). The procedure counter and

time areas shown in Figure 4.1 (p. 130) clearly show that

Profiler stores procedure specific data.

Appeal No. 2001-0653
Application 08/820,736

- 18 -

For the reasons discussed above, appellants have not shown

any error in the rejection of claim 1 in Group 1. The rejection

of claims 1, 3, 4, 20-22, 32, 34, and 40 is sustained.

Group 2 - Claim 33

The examiner points, without explanation, to Profiler,

pages 130-132 (Paper No. 7, p. 14). These pages cover a section

entitled "Who pays for loops?" It is not explained, nor do we

understand, how this section is intended to be applied against

the limitations of claim 33.

Appellants argue that Profiler discloses storage of profile

data on a program-by-program basis and therefore does not suggest

the use of module specific files (Br11).

The examiner responds that Profiler captures the same

information, but uses a different data structure (EA31). The

examiner states that "[d]ata structures are not patentable and

the Examiner holds the functionality equivalent" (EA31).

We agree with the examiner that Profiler captures the same

information as claimed: count information for each procedure

within each module. However, while data structures per se are

non-statutory subject matter, see In re Warmerdam, 33 F.3d 1354,

1361-62, 31 USPQ2d 1754, 1760 (Fed. Cir. 1994), it is not true

that data structure limitations in a claim to a product can be

disregarded, see In re Lowry, 32 F.3d 1579, 1582, 32 USPQ2d 1031,

1034 (Fed. Cir. 1994). The so-called "point of novelty" approach

Appeal No. 2001-0653
Application 08/820,736

- 19 -

where the non-statutory subject matter in a claim (e.g., a

mathematical algorithm per se) is ignored has been consistently

rejected, see Diamond v. Diehr, 450 U.S. 175, 188-89, 209 USPQ 1,

9 (1981) (claims must be considered as a whole), with the

possible exception of printed matter where it bears no functional

relationship to the substrate on which it is printed, see

In re Gulack, 703 F.2d 1381, 1386, 217 USPQ 401, 404 (Fed. Cir.

1983). Further, it was improper for the examiner to dismiss the

differences by just stating that the data structures are

functionally equivalent. The issue is not equivalence, but

obviousness. See In re Edge, 359 F.2d 896, 898, 149 USPQ 556,

557 (CCPA 1966); In re Ruff, 256 F.2d 590, 599, 118 USPQ 340, 348

(CCPA 1958) (the equivalence must be disclosed in the prior art

or be obvious within the terms of § 103). Nevertheless, we

conclude that the subject matter of claim 33 would have been

obvious to one of ordinary skill in the computer programming art.

Initially, we clarify the issue. Claim 33 recites: "The

method of claim 32 further comprising the steps of: creating a

profile file for each module counter area; and including within

each profile file said count information collected for each

relevant procedure counter area." A "file" is defined in

computer science as "a collection of bytes stored as an

individual entity." Thus, claim 33 requires that each module

counter area (MCA) is a separate profile data file as shown in

Appeal No. 2001-0653
Application 08/820,736

- 20 -

Fig. 1. Independent claim 32 does not recite how the module

counter area for each module and the procedure counter area for

each procedure in the module are stored; the profile storage

could be a single file which contains all procedure counters for

one or all modules as taught by Profiler. Profiler stores

profile information about each module of the program and each

area (routine or procedure) in the module as evidenced by the

fact that the collected statistics for the program can be viewed

in the Execution Profile window by module name and area name

(pp. 13-14 & 55-56). The storage area associated with procedures

for a given module can be considered a module counter area since

the module counter area is not recited to consist of anything

other than procedure counter areas. Profiler discloses that the

profile data statistics program are stored in a .TFS file. Thus,

the arguable difference between Profiler and the subject matter

of claim 33 is that Profiler does not expressly teach storing

procedure counter data for each module in a separate profile

file. Again, no optimizing compiler is claimed, so Aho adds

nothing to the rejection.

Profiler discloses that for large programs involving several

modules, profiling should be done on one module at a time (e.g.,

p. 110: "If your source consists of 10,000 lines in ten modules,

you should probably analyze only one module at a time in active

analysis."; p. 115: "In very large programs, limit your selection

Appeal No. 2001-0653
Application 08/820,736

- 21 -

of area markers to a single module per profile run."). One of

ordinary skill in the computer art would have known that the

profile data for one module would be saved as a single file

corresponding to the claimed "profile file." Thus, it would have

been obvious to one of ordinary skill in the art that profiling

data for procedures and modules in Profiler could be saved either

as one file, containing all procedure data for all modules, or as

one file per module. The rejection of claim 33 is sustained.

Group 3 - Claims 5-7, 13-17, 23, 24, 29, 30, 35, 36, and 39

The independent claims in this group require an optimization

mechanism that (1) determines if procedure specific profile

information exists for a procedure, and (2) determines if the

existing profile information is valid. As described in the

specification (spec. at 14, lines 15-18): "[P]rofile data will be

said to be 'valid' either if the corresponding procedure has not

changed, or if the data is considered sufficiently adequate

(e.g., it is similar enough to the original procedure) and the

compiler can still use the data in this fashion."

Appellants argue that neither Profiler nor Aho discloses or

suggests an optimizer that checks for each procedure in a module

to determine whether both existing and valid profile information

is present (Br12). It is argued that Aho discusses optimization

but presumes that all necessary profile information is available

Appeal No. 2001-0653
Application 08/820,736

- 22 -

and can be used during optimization (Br12). It is argued that by

checking for both the existence and validity of profile

information for each procedure during optimization, the compiler

is able to perform optimization in many instances without

requiring profiling to be repeated on a modified program (Br12).

The examiner finds that Aho teaches several forms of

commonly used data validation, such as "type checking," and that

validation of data is routine in programming (EA34). The

examiner concludes that the broadest reasonable interpretation

covers the recited claim limitations (EA34).

While we agree with the examiner that data validation is

routine in compiling, this does not make all validation obvious.

This following analysis only addresses the claim limitations and

gives no weight to the arguments about the way the validity data

may be used because this is not claimed. Profiler generates

profile information and discusses various optimization techniques

to be performed by a human (e.g., pp. 113-116; 124-128).

Profiler does not perform any optimization by itself and, thus,

has no need to determine whether profile information is valid.

Aho discloses that compilers which perform code-improving

transformations are called optimizing compilers (p. 585). Aho

discloses (p. 585): "Profiling the run-time execution of a

program on representative input data accurately identifies the

heavily traveled regions of a program. Unfortunately, a compiler

Appeal No. 2001-0653
Application 08/820,736

- 23 -

does not have the benefit of a sample input data, so it must make

its best guess as to where the program hot spots are." As

indicated in the second sentence, the code optimizations

described in Chapter 10 of Aho are not based on profile

information because this is generally not available. However,

Aho reasonably suggests to one of ordinary skill in the compiler

art to concentrate the optimization techniques on heavily

traveled regions of a program as determined by a profiler. In

any case, it is admitted that optimizing compilers which use

profile information were known in the computer art (spec. at 11,

lines 8-10: "Compilers can also automatically read in profile

information during an optimization phase to create an optimized

version of the computer program."). However, none of Profiler,

Aho, or the admitted prior art discloses or suggests determining

if existing profile information is valid. The fact that

compilers may determine if other information is valid does not

suggest the obviousness of this limitation. We conclude that the

examiner has failed to establish a prima facie case of

obviousness with respect to the claims of Group 3. The rejection

of claims 5-7, 13-17, 23, 24, 29, 30, 35, 36, and 39 is reversed.

Group 4 - Claims 8-10, 25, 26, and 37

The claims in this group all depend on claims in Group 3 and

define how the optimization mechanism determines validity. For

Appeal No. 2001-0653
Application 08/820,736

- 24 -

example, representative claim 8 recites that validity is

determined "by comparing a signature of each procedure with

information stored in each corresponding procedure counter area."

A "signature" is described in the specification (spec. at 23,

lines 17-22). Claims 25 and 26 do not recite "signatures," but

determine validity by the same kind of comparisons.

Since neither Profiler nor Aho teaches or suggests

determining validity, as discussed in the analysis of Group 3,

they do not teach or suggest the specific mechanisms for

determining validity in the claims of Group 4. Accordingly, the

rejection of claims 8-10, 25, 26, and 37 is reversed.

Group 5 - Claims 11, 12, 18, 19, 27, 28, 31, and 38

The claims in this group recite that the optimization

mechanism additionally includes a mechanism that constructs a

call graph from profile data and a mechanism that analyzes the

call graph to determine a procedure packaging order which omits

procedures that no longer exist. Appellants argue that this

allows optimization of a packaging order despite the absence of

some profiling data (Br15). It is further argued that "[n]either

Profiler nor Aho discloses or suggests the performance of

optimization when only partial profile data is available" (Br15).

The examiner finds that appellants fail to address the kind

of information gathered for optimization in Profiler at Table 3.1

Appeal No. 2001-0653
Application 08/820,736

- 25 -

(p. 114) and the fact that call graphs are inherent in compilers

(EA38). The examiner observes that Aho teaches optimization

based on collected performance data (EA38).

We do not consider the examiner's reasoning persuasive of

obviousness because it does not address the specifics of the

claimed subject matter. The fact that call graphs and optimizing

compilers were known, as evidenced by Chapter 10 of Aho, does not

address the specific limitations of a call graph based on profile

data or determining a procedure packaging order as claimed.

Neither Profiler nor Aho discloses constructing a call graph

based on profile data or determining a procedure packaging order.

The specification is more relevant than any art cited by the

examiner and admits that "[k]nown in the art are existing methods

that analyze a weighted call graph of an object module or

executable module and rearrange the procedures in that module to

improve spatial locality, thus making more efficient use of

memory paging systems" (spec. at 24, lines 7-10). However, the

specification says nothing about a mechanism that "omits

procedures that no longer exist" (claim 8). While Aho discloses

dead-code elimination (p. 595), this is not in connection with

packaging and the examiner does not rely on this teaching of Aho

or on the admitted prior art. The optimization described in Aho

is not concerned with optimizing spatial locality by determining

a procedure packaging order. We conclude that the examiner has

Appeal No. 2001-0653
Application 08/820,736

- 26 -

failed to establish a prima facie case of obviousness with

respect to the claims of Group 5. The rejection of claims 11,

12, 18, 19, 27, 28, 31, and 38 is reversed.

CONCLUSION

The rejection of claim 26 under 35 U.S.C. § 112, second

paragraph, is reversed.

The rejection of claims 1, 3, 4, 20-22, 32-34, and 40 under

§ 103(a) is sustained. The rejection of claims 5-19, 23-31, and

35-39 under § 103(a) is reversed.

No time period for taking any subsequent action in

connection with this appeal may be extended under 37 CFR

§ 1.136(a).

AFFIRMED-IN-PART

JERRY SMITH)
Administrative Patent Judge)

)
)
)
) BOARD OF PATENT

LEE E. BARRETT) APPEALS
Administrative Patent Judge) AND

) INTERFERENCES
)
)
)

MAHSHID D. SAADAT)

Appeal No. 2001-0653
Application 08/820,736

- 27 -

Administrative Patent Judge)

Appeal No. 2001-0653
Application 08/820,736

- 28 -

Scott A. Stinebruner
WOOD, HERRON & EVANS LLP
2700 Carew Tower
441 Vine Street
Cincinnati, OH 45202-2917

